
||

Gábor Sörös, Stephan Semmler, Luc Humair, Otmar Hilliges

ISWC 2015, Osaka, Japan

fast blur removal for

wearable QR code scanners

||

ubiquitous smartphone/tablet/watch/glasses scanners

allow us to access information on every physical object

smartphones/tablets/watches/glasses

- are always with us

- have cameras, sensors, intuitive UI

- are easily programmable
211.09.2015

traditional barcode scanning next generation barcode scanning

||

Quick Response (QR) codes

 are found in numerous applications

ticketing, shopping, logistics, etc.

 encode more information than barcodes

 have stronger error correction than barcodes

 wearable scanner SDKs are available for free

3

scanning QR codes with wearable devices

11.09.2015

|| 4

scanning QR codes with wearable devices

11.09.2015

motion blur makes the codes unreadable

our goal: recover the information from motion-blurred QR codes

gabor.soros@inf.ethz.ch

our input our output

|| 5

basics of blurry image formation

11.09.2015

convolution with a

blur kernel 𝒌
adding camera

noise 𝒏

uniform blur model

sharp scene

𝑰
blurry scene

𝑰 ∗ 𝒌
observed image

𝑩 = 𝑰 ∗ 𝒌 + 𝒏

|| 6

blur removal problem

11.09.2015

=

deconvolution:

𝑩 = ? ∗ 𝒌 + 𝒏
blind deconvolution:

𝑩 = ? ∗ ?+ 𝒏

figure inspired by Robert Fergus

∗
a motion blur

kernel

∗
identity (Dirac)

kernel

∗
a defocus blur

kernel

|| 7

blind deconvolution for QR scanning?

11.09.2015

existing blind deconvolution algorithms

 are slow even on PC

 are tuned to natural images

 usually fail on QR codes (structure very different!)

outputs of some previous methods
input

||

 blur can be estimated from the many QR edges

 but we need to suppress the small structures [Xu2010]

 QR codes do not need to look good for decoding

 in contrast to photographs, where restoration quality counts

 our main concern is speed

 QR codes include error correction / checksum

 the algorithm can stop when the checksum is correct

 false decoding is practically impossible

 only partially restored codes might be decoded too

8

observations for deblurring QR codes

11.09.2015

|| 9

restoration-recognition loop

11.09.2015

we follow a common recipe for blind deconvolution [Cho2009]

 alternate between solving for I and solving for k

 suppress noise and boost edges

 enforce QR properties

 try to decode at every iteration

argmin
𝐼,𝑘

𝐵 − 𝑘 ∗ 𝐼 + λ𝐼𝑝𝐼 𝐼 + λ𝑘𝑝𝑘(𝑘)

I QR

I’k

blind deconvolution via energy minimization

|| 10

fast image estimation

11.09.2015

 algorithm of Krishnan and Fergus [Krishnan2009]

 with α = 1 the solution is particularly simple [Wang2008]

 solution via FFTs and pixel-wise thresholding equations

further details omitted

 fast and good quality (compared to others)

argmin
𝐼

𝐵 − 𝑘 ∗ 𝐼 2
2+ λ𝐼 ∥ 𝛻𝐼 ∥

α

prior on gradients

given B and k, estimate I

||

 the restored I is often imperfect (contains ringing and noise)

and cannot be used directly to estimate k

 use image filters to suppress noise and boost edges [Cho2009]

 in our work: Joint Weighted Median Filter [Zhang2014]

significantly faster while similar quality on black & white images

11

fast edge-aware filtering

11.09.2015

Bilateral filter

Suppress noise and small details

Shock filter

Restore strong edges

→

image from

[Cho2009]

||

 in image gradient domain

 not using pixel values simplifies the equations [Cho2009]

 solve via conjugate gradients and FFTs

 shift to geometrical center

 discard small disconnected parts

 repeat over multiple image scales

 aids the convergence to the correct kernel

12

fast kernel estimation

11.09.2015

argmin
𝑘

𝛻𝐵 − 𝑘 ∗ 𝛻𝐼 2
2 + λ𝑘 ∥ 𝑘 ∥ 2

2

given B and I, estimate k

prior on kernel

image and kernel size

||

 peak (Dirac) kernel

 usual choice

 faster

 grid kernel

 helps with large blur, but converges slower in general

 (use motion sensors to decide which one is better)

13

fast kernel estimation

11.09.2015

initialization

||

 we iterate on each scale for refinement

 we iterate over multiple scales for better convergence

 we use a conventional open-source QR decoder

14

restoration-recognition loop

11.09.2015

||

 OpenCV – cross-platform image processing in C++

 FFTW – fast Fourier transform

 ZBar – open-source decoder

 Android recorder application
720x480 preview frames

300x300 search window (~uniform blur)

 camera response function (CRF) must be linear

 experiments on

 Lenovo T440p laptop

 Motorola Nexus 6 smartphone

 Google Glass smartglasses

15

implementation

11.09.2015

|| 16

experiments (synthetic blur)

11.09.2015

quality is on par with the state of the art, and a magnitude faster

[Cho2009]
0.48s

[Sun2013]
217.73s

[Xu2010]
0.96s

[Xu2013]
1.05s (GPU)

input

[Perrone2014]
171.90s

[Pan2014]
12.74s

ours
0.61s

ground truth[Pan2013]
133.8s

|| 1711.09.2015

experiments (real blur)

340 images, improvement from 63% to 88%

|| 1811.09.2015

experiments (real blur)

340 images, improvement from 63% to 88%

a negative example… rotation

|| 19

experiments (real blur)

11.09.2015

1.69s 2.82s

18.62s 12.52s14.65s

14.37s

|| 20

a challenging example

11.09.2015Nexus 6 screen capture

||

 uniform blur
 QR error correction helps with slightly non-uniform blur

 camera response function
 online calibration possible?

 speed: still not real time
 calculate FFT on mobile GPU

 run in parallel with decoding other frames

21

limitations

11.09.2015

||

 use inertial sensors to estimate camera motion
 requires precise camera-IMU synchronization

 need to know the camera - code distance

 use multiple images from the camera stream
 requires blurry image alignment

 other types of blur (defocus blur, upscaling blur)

 requires different kernel priors

22

future work

11.09.2015

||

We presented a robust blur removal algorithm for

QR code images captured by wearable scanners

 bringing image deblurring to wearables

 exploiting QR code properties

 introducing new initialization scheme for large blur

 PC and Android implementations

We showed promising restoration results and proposed

future directions for research.

23

summary

11.09.2015

||

thank you

11.09.2015 24

||

 [Joshi2008] N. Joshi, R. Szeliski, D. Kriegman – PSF estimation using sharp edge prediction, CVPR,

2008

 [Cho2009] S. Cho, S. Lee – Fast motion deblurring, SIGGRAPH Asia, 2009

 [Krishnan2009] D. Krishnan, R. Fergus – Fast image deconvolution using hyper-Laplacian priors,

NIPS, 2009

 [Tai2013] Y.-W. Tai, X. Chen, S. Kim, S. J. Kim, F. Li, J. Yang, J. Yu, Y. Matsushita, M. Brown – Nonlinear

camera response functions and image deblurring: Theoretical analysis and practice, PAMI, 2013

 [Sun2013] L. Sun, S. Cho, J. Wang, J. Hays – Edge-based blur kernel estimation using patch priors,

ICCP, 2013

 [Pan2013] J. Pan, R. Liu, Z. Su, X. Gu – Kernel estimation from salien structure for robust motion

deblurring, Signal Processing: Image Communication, 28, 9, 2013

 [Pan2014] J. Pan, Z. Hu, Z. Su, M.-H. Yang – Deblurring text images via L0-regularized intensity and

gradient prior, CVPR, 2014

 [Perrone2014] D. Perrone, P. Favaro – Total variation blind deconvolution: the devil is in the details,

CVPR, 2014

 [Xu2010] L. Xu, J. Jia – Two-phase kernel estimation for robust motion deblurring, ECCV, 2010

 [Xu2013] L. Xu, S. Zheng, J. Jia – Unnatural L0 sparse representation for natural image deblurring,

CVPR, 2013

 [Zhang2014] Q. Zhang, L. Xu, J. Jia – 100+ times faster weighted median filter (WMF), CVPR, 2014

25

references

11.09.2015

||

Reuters - Days numbered for barcodes as shoppers demand more data
http://www.reuters.com/article/2015/08/28/us-retail-consumers-barcodes-insight-idUSKCN0QX0FD20150828

http://i.ytimg.com/vi/30Pjl31cyDY/maxresdefault.jpg

http://static1.1.sqspcdn.com/static/f/458611/17438941/1333367246603/qr-code-shopping-scan-item-and-

buy.jpg

http://www.ubimax.de/media/k2/items/cache/7f2cd38b7681e6e2ef83b5a7a5385264_L.jpg

OpenCV – www.opencv.org

FFTW – www.fftw.org

ZBar – www.github.com/zbar

26

image sources and links

11.09.2015

http://www.github.com/zbar

